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ABSTRACT: In this paper we analyze Atlantic Ocean hurricane activity in the European Centre for Medium-Range

Weather Forecasts (ECMWF) monthly hindcasts for the period 1998–2017. The main climatological characteristics of

Atlantic tropical cyclone (TC) activity are considered at different lead times and across the entire ECMWF ensemble using

three diagnostic variables: the number of tropical cyclones, the number of hurricanes, and the accumulated cyclone energy.

The impacts of changing horizontal resolution and stochastic parameterization are clear in these diagnostic variables. The

model skill scores for the number of tropical cyclones and accumulated cyclone energy by lead time are also computed.

Using cluster analysis, we compare the characteristics of the forecast TC tracks with observations. Although four of the

ECMWF clusters have similar characteristics to observed ones, one of the ECMWF clusters does not have a corresponding

one in observations. We consider the predictability of each of these clusters, as well the modulation of their frequency by

climate modes, such as the El Niño–Southern Oscillation and the Madden–Julian oscillation, taking advantage of the very

large sample size of TC datasets in these hindcasts.
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1. Introduction

For many years the modulation of tropical cyclone (TC)

activity by the Madden–Julian oscillation (MJO) has been

known (Li et al. 2018; Nakazawa 1986; Liebmann et al. 1994).

Basically, when or soon after theMJO convective phase occurs

over a region, there is an increase in the occurrence of TCs. In

contrast, typically fewer TCs form over that location during the

suppressed phase, since the large-scale environmental is less

favorable for TC genesis (Camargo et al. 2009; Klotzbach

2014). The MJO–TC connection supports the possibility of

skillful TC forecasts on subseasonal time scales, since theMJO

is predictable on those time scales (Robertson et al. 2020).

While the MJO is not the only tropical mode of intraseasonal

variability that influences TC activity (Schreck et al. 2012), it is

certainly the dominant predictable one on the subseasonal

time scale.

In the last few years, there has been tremendous effort in the

scientific community to improve forecasts on subseasonal-to-

seasonal time scales (Vitart et al. 2017; White et al. 2017; Vitart

and Robertson 2018; Pegion et al. 2019; Lang et al. 2020; Mariotti

et al. 2020; Merryfield et al. 2020), among them, subseasonal

forecasts of tropical cyclones (Camargo et al. 2019;Robertson et al.

2020). One of the main community efforts is the Subseasonal-to-

Seasonal (S2S) prediction project, established jointly by theWorld

Weather Research Program and the World Climate Research

Program in 2013 and currently in Phase II with the goal of im-

proving forecast skill and understanding the sources of subseasonal

to seasonal variability (Vitart et al. 2017). The project created an

extensive database containing subseasonal-to-seasonal forecasts

and reforecasts from 11 operational and research centers.

One of the modeling centers in that project is the European

Centre for Medium-Range Weather Forecasts (ECMWF).

The ECMWF system in the last several years has substantially

improved its forecast skill on subseasonal time scales, largely

due to improvements in forecasting the MJO and its tele-

connections (Vitart and Molteni 2010; Vitart 2014; Vitart

et al. 2017). The improvements of the MJO in the ECMWF

model have been discussed in detail in Vitart (2014), Hirons

et al. (2013a,b). The main source of improvement were

changes in the convective parameterization that were intro-

duced in Bechtold et al. (2008). These studies showed that

increasing the sensitivity of the deep convection scheme to

environmental moisture modifies the relationship between

precipitation andmoisture in the model, andmoremoisture is

able to build up. This moisture control on convection is key to

simulating well the MJO. The current level of MJO forecast

skill in dynamical systems is a remarkable scientific achieve-

ment, given that two decades ago, statistical models had

higher skill than dynamical ones (e.g., Jones et al. 2000).

Given the strong modulation of TC activity by the MJO, it is

not surprising that one focus of subseasonal forecasts has been

TCs. Many papers have analyzed various aspects of the skill of

the ECMWF system in forecasting TCs on seasonal and sub-

seasonal time scales. For instance, the predictability of the en-

semble tracks in the ECMWF 32-day ensemble forecasts for one

or two seasons in the western North Pacific or North Atlantic

Ocean was evaluated in Elsberry et al. (2010, 2011, 2014), Tsai

et al. (2013). Vitart (2009) examined the impact of the MJO on

TCs and landfall risk, and Vitart et al. (2010) compared the skill

of the weekly predictions in the ECMWF system with a statis-

tical model in the Southern Hemisphere. The predictability of
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the ECMWF system for TCs the North Atlantic and north

Indian Ocean on intraseasonal time scales was discussed in

Belanger et al. (2009, 2010, 2012). A multimodel comparison of

high-resolution (7–10 km) climate models simulations of the

MJO and its relationship with TCs in the boreal summer during

8 years as part of the Project Athena was presented in Satoh

et al. (2012). More recently, as part of the MINERVA project,

Manganello et al. (2019b,a) explored the predictability in the

ECMWF seasonal forecasts for the North Atlantic.

One focus of the S2S project is tropical cyclones (TCs).

The forecast skill of those models was examined in Lee et al.

(2018) and Lee et al. (2020). The focus of Lee et al. (2018)

was the probabilistic forecast skill of basin-wide TC genesis.

Lee et al. (2020) focused on TC frequency occurrence in

regional subbasins, as well as intensity using the accumu-

lated cyclone energy (ACE). The ECMWF clearly appeared

as the most skillful model in the measures considered within

the subset of S2S models analyzed. However, we should note

that the TCs in the S2S project were not tracked using the

original model resolution, but interpolated to a lower horizontal

resolution common grid.

Many other studies have examined the ability of models

to forecast TCs on subseasonal time scales (e.g., Camargo

et al. 2019; Robertson et al. 2020). In many cases the analysis

was done for specific events, as in Fu and Hsu (2011), who

showed that a conventional atmosphere–ocean model was

able to predict a specific event in the north Indian Ocean

with a lead time of 2 weeks. Similarly, Xiang et al. (2015)

showed that the Geophysical Fluid Dynamics Laboratory

(GFDL) system predicted the landfall location and timing of

Hurricane Sandy with 1 week of lead time and Typhoon

Haiyan’s landfall in the Philippines with 2 weeks of lead time.

The ability of the GFDLHigh Resolution Atmospheric Model

(HiRAM) to reproduce the subseasonal modulation of TCs in

the Gulf of Mexico and western Caribbean Sea was shown in

Gao et al. (2017). In a follow-up paper, Gao et al. (2019)

showed that using a nested grid with enhanced resolution im-

proved the monthly forecast skill of HiRAM in the North

Atlantic.

More recently, Camp et al. (2019) showed that the

Australian Bureau of Meteorology seasonal forecasting

system (ACCESS-S1) has high skill for predictions of the

MJO with lead times of 30 days and is able to reproduce the

TC modulation by the MJO in the Southern Hemisphere.

Gregory et al. (2019) evaluated the forecasts in that system

for 2017–18 and showed that it skillfully predicted the for-

mation of major cyclone events with lead times greater than

2 weeks.

In this paper, we explore the climatological characteristics,

skill, and predictability of North Atlantic TCs in the ECMWF

monthly hindcasts for the period 1998–2017. We consider

how well the hindcasts are able to reproduce the main cli-

matological and track characteristics of Atlantic TCs. The

large number of the TCs in the hindcasts makes it ideal to

explore the modulation of the TC activity by various climate

modes (El Niño–Southern Oscillation, Madden–Julian os-

cillation, and North Atlantic Oscillation). The predictability

of the system by lead time and cluster is also explored.

Section 2 describes the datasets and methods used in our

analysis. Our results are presented in section 3, and we con-

clude with a discussion in section 4.

2. Data and methods

a. Atlantic tropical cyclones

The observed best track dataset for North Atlantic tropical

storms and hurricanes was obtained from the National

Hurricane Center (Landsea and Franklin 2013). Only storms

that reach 35 kt (tropical storm strength; 1 kt’ 0.5m s21) are

included in our analysis, including those labeled as subtrop-

ical in the NHC dataset. Storms that reach at least 64 kt are

defined as hurricanes. The TC diagnostics considered in our

analysis are the number of tropical cyclones (NTC), that is,

the number of tropical storms and hurricanes; the number of

hurricanes (NHUR); and the accumulated cyclone energy

(ACE). The ACE (Bell et al. 2000) for each storm is calculated

FIG. 1. Tracks of Atlantic tropical storms and hurricanes:

(a) ECMWF monthly hindcasts for E2 in weeks 1 and 2 and

(b) observations 1950–2018 (822 storms). In (a), 822 tracks were

chosen randomly among a total of 1037 tracks so as to have the same

number of tracks as in (b). Colors indicate storm intensity along track:

tropical depression (gray), tropical storm (blue), hurricanes (red;

categories 1 and 2), and major hurricanes (magenta; categories 3–5).
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by summing the square of the maximum wind speeds for the

6-hourly snapshots that reach at least 35 kt.

b. El Niño–Southern Oscillation

The state of the El Niño–Southern Oscillation (ENSO) is

defined based on the Niño-3.4 index (Bamston et al. 1997) in

August–October (ASO), the peak of the Atlantic hurricane

season, available from the Climate Prediction Center (https://

www.cpc.ncep.noaa.gov/) from 1950 to the present, based on

Extended Reconstructed Sea Surface Temperature, version 5

[ERSST v5; Huang et al. (2017)]. Following Goddard and Dilley

(2005) and Camargo et al. (2007a), in observations we define the

top 25%of events of the Niño-3.4 ASO distribution in the period

1950–2018 as El Niño events and the bottom 25%of events as La

Niña events.

For the ECMWF hindcast period, we consider the top five

observed warm and cold ASO ENSO seasons:

d El Niño: 2002, 2004, 2006, 2009, and 2015;
d La Niña: 1998, 1999, 2007, 2010, and 2011.

The other 11 seasons are considered to be neutral. Since this is a

small number of ENSO events with which to analyze observed

TCs, we also consider the top 17 warm and cold ASO ENSO

seasons in the period 1950–2018:

d El Niño: 1957, 1963, 1965, 1969, 1972, 1982, 1986, 1987, 1991,
1994, 1997, 2002, 2004, 2006, 2009, 2015, and 2018;

d La Niña: 1950, 1954, 1955, 1956, 1961, 1964, 1970, 1971, 1973,
1975, 1988, 1995, 1998, 1999, 2007, 2010, and 2011.

The other 35 seasons are considered to be neutral.

Besides the top observed ENSO events for the period 1998–

2017, listed above, we also considered the Niño-3.4 values

simulated by the ECMWF hindcasts to determine the ENSO

phase in our analysis. As the ECMWF hindcasts are not

available for the whole ASO season, we consider the Niño-3.4

FIG. 2. (a) Number of tropical cyclones (NTC) in week 2 for all ensembles (control E0 and ensemble members 1–

10: E1–E10) and in observations. (b) NTC for ensemble 2 for all leads [weeks 1–6 (W1–W6)] and in observations.

(c) Number of hurricanes (NHUR) in week 2 for all ensembles and in observations. (d) NHUR for ensemble 2 for

all leads and in observations. Also shown on top of each bar in (b) and (d) is the spread across the ensembles

estimated using bootstrap.
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hindcast values for the date of the storm formation, with the

thresholds of the El Niño and La Niña phases determined by

the 25th and 75th percentiles of the distribution of the model

Niño-3.4 for that month. We do not expect large differences

between the two ENSO definitions, given the lead time, but they

will not be the same given themonthly versus seasonal definitions,

in particular in the late-spring and early-summer months.

c. North Atlantic Oscillation

The monthly values of the North Atlantic Oscillation

(NAO) index are obtained from the Climate Prediction Centre

(https://www.cpc.ncep.noaa.gov/) and are available from 1950

to the present. The NAO index is calculated following the

procedure of Barnston and Livezey (1987) and standardized by

the 1981–2010 climatology. Similarly to ENSO phases, NAO

positive (NAO1) and NAO negative (NAO2) observed

phases are defined as the top and bottom quartiles of the dis-

tribution during the 1950–2018 period. Here we consider NAO

for the months of May and June (MJ), following Kossin et al.

(2010) who found a relationship between the NAO in those

months with the Atlantic hurricane activity using the same

cluster analysis considered here.

The NAO analysis for the ECMWF system was performed

in two different ways. The first considers the NAO value at

FIG. 3. (a) Ensemble mean NTC per season for all leads [weeks 1–6 (W1–W6)] and in

observations. (b) NTC per season for week 2 for all ensembles (E0; E1–E10) and in obser-

vations. (c) Ensemble mean NHUR per season for all leads and in observations. (d) NHUR

per season for week 2 for all ensembles and in observations.
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the time of TC genesis. The NAO1 and NAO2 phases are

defined based on the 25th and 75th percentiles, respectively,

of all NAO values at the time of TC genesis in the hindcast,

i.e., the NAO will correspond to values varying from June to

November, as predicted by the system, depending on the TC

genesis time. The second considers the observed MJ NAO

values, with NAO1 and NAO2 defined on the basis of the

25th and 75th percentiles, respectively, of the NAO values in

the period 1998–2017. Seasons with NAO1 in MJ are 1999,

2000, 2002, 2009, and 2013; seasons with NAO2 in MJ are

1998, 2008, 2010, 2012, and 2014. We only obtained statisti-

cally significant results using the second option, and we show

only results from that case below.

d. Madden–Julian oscillation

The MJO is defined based on the phase of the real-time

multivariate MJO (RMM) index developed by Wheeler and

Hendon (2004) using observed wind and outgoing longwave

radiation data. The observed RMM data are available on-

line through the Australian Bureau of Meteorology (http://

www.bom.gov.au/climate/mjo/) for the period 1979 to the

present. The MJO phase in the ECMWF system was ob-

tained by applying the same method to the model data.

e. ECMWF monthly hindcasts

The ECMWF monthly forecasting system has been run

routinely since October 2004 (Vitart 2003, 2004), with regular

updates since then. This system fills the gap between the two

other operational forecasting systems at ECMWF, namely,

the medium-range weather and seasonal forecast forecasting

systems. The current version of the ECMWF monthly fore-

casting system is described in detail in Vitart et al. (2008).

Although the ECMWFmonthly forecast system was originally

set up differently from the ECMWF medium-range ensemble

system, the current version was developed with the goal of

‘‘seamless’’ merging the medium-range and monthly coupled

forecasting systems. A variable resolution approach reduces

the computational cost of extending the medium-range fore-

casts and reforecasts (hindcasts) to monthly lead times (Buizza

et al. 2007). From day 0 to day 10, the atmospheric model is run

with a T399 horizontal resolution and L62 vertical resolution,

forced with persisted SST anomalies. From day 11 to day 46,

the horizontal resolution is T255 and the atmospheric model is

coupled to the ocean model.

Hindcasts matching the forecast start dates are produced 2

times per week on Thursdays and Sundays. Here we analyze

11 ensemble members of the hindcasts for the period 1998–

2017. The hindcasts were used to calibrate the forecasts for

2018 and are for the period June–November of each year.

The first hindcast had a start date of 4 June 1998, and the last

hindcast had a start date of 1 November 2017. Only target

periods for the months June–November (hurricane season)

of each year were included in our analysis. These hindcasts

were produced in 2018, with the version of the system from

cycle 45r1 (https://www.ecmwf.int/en/forecasts/documentation-

and-support/changes-ecmwf-model). The first ensemble member

(E0) is the control simulation, and ensemble members 1–10 are

produced using stochastic perturbations of the model physics

(Leutbecher et al. 2017; Ollinaho et al. 2017) to represent

the model uncertainty. The impact of stochastic perturba-

tions on TC forecasts has been discussed in Lang et al.

(2012). They showed that the stochastic parameterization

leads to a large TC track and intensity spread that matches

well the ensemble mean average error. More recently,

Vidale et al. (2021) compared the impact of the stochastic

physics with that of model resolution in two global climate

TABLE 1. Statistics of observations and the ECMWF hindcasts for tropical cyclones (NTC), number of hurricanes (NHUR), and ACE

(31025) per season. For the ECMWF ensemble mean and for the control simulation (E0), the mean, standard deviation, and minimum

and themaximum values across all years for each lead time are shown. For observations we show themean, standard deviation, minimum,

and maximum values for the period 1950–2018, as well as for the same period of the hindcasts (1998–2017).

NTC NHUR ACE

Lead Mean Std dev Min Max Mean Std dev Min Max Mean Std dev Min Max

ECMWF ensemble mean

Week 1 23.7 7.0 6 44 4.3 2.8 0 14 23.0 10.6 2.2 51.6

Week 2 26.4 7.9 7 50 2.9 2.2 0 11 21.3 9.4 3.9 56.9

Week 3 16.3 5.8 3 35 1.5 1.6 0 7 15.6 7.4 2.2 40.5

Week 4 14.9 5.2 3 28 1.2 1.3 0 6 13.6 6.2 2.5 33.2

Week 5 14.7 5.8 2 35 1.1 1.2 0 4 12.6 5.7 1.4 28.7

Week 6 13.0 4.9 3 27 0.4 0.6 0 3 8.1 3.4 1.1 19.4

ECMWF control (E0)

Week 1 10.9 4.1 6 21 1.8 2.0 0 8 11.0 6.5 2.2 27.5

Week 2 13.5 3.7 7 20 1.3 1.5 0 6 13.3 5.6 4.0 23.1

Week 3 9.0 3.0 3 15 0.8 0.8 0 3 10.2 5.1 2.2 22.9

Week 4 8.6 3.2 3 14 0.5 0.8 0 3 9.5 4.8 2.5 20.7

Week 5 7.2 4.4 2 18 0.5 0.8 0 2 7.2 5.4 1.4 21.0

Week 6 7.2 3.6 3 14 0.2 0.4 0 1 4.4 2.4 1.1 9.4

Observations

1998–2017 15.1 4.6 8 29 7.6 3.1 2 15 15.2 6.5 5.2 28.1

1950–2018 11.9 4.2 4 29 6.4 2.7 2 15 12.0 6.2 1.9 28.1
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models, one of which, EC-Earth3, is based on the ECMWF

system. The physics parameterization is not the only aspect

of the model that affects TC forecasts—horizontal resolu-

tion and ocean coupling are also fundamental for skillful TC

forecasts (Magnusson et al. 2019). Relevant for these time

scales, ensemble perturbations based on stochastic physics

have been shown to improve the MJO skill in the ECMWF

system (Lock et al. 2019).

The tropical storms and hurricanes in the ECMWF system

are tracked using the tracking algorithm developed by Vitart

(Vitart et al. 1997, 2001; Vitart and Anderson 2001). The

simulated storms are required to satisfy specific criteria to be

tracked: maximum relative vorticity above a threshold of 3.53
1025 s21, a local minimum sea level pressure and a warm core

in the upper troposphere, and duration of at least 2 days. From

all of the storms tracked in the hindcasts, we only consider

storms whose maximumwind speed reaches at least 17m s21 in

weeks 1 and 2 and at least 15m s21 in weeks 3–6. This differing

threshold reflects the change in model resolution after day 10.

f. Cluster analysis

The cluster analysis applied here was developed by Gaffney

(2004) and is described in detail in Gaffney et al. (2007). It has

been applied to observed tropical cyclone tracks in various

regions: the western North Pacific (Camargo et al. 2007b,c), the

eastern North Pacific (Camargo et al. 2008), and the Southern

Hemisphere (Ramsay et al. 2012), as well as extensively to

climate model TC tracks (Camargo 2013; Daloz et al. 2015;

FIG. 4. Observed tracks of Atlantic tropical storms and hurricanes for the period 1950–2018 for four clusters.

Colors indicate storm intensity along track: tropical depression (gray), tropical storm (blue), hurricanes (red;

categories 1 and 2), and major hurricanes (magenta; categories 3–5).

TABLE 2. Correlations (Corr) and rank correlations (Rank) between ECMWF and observations, as well as the root-mean-square error

(RMS) (normalized by the observed standard deviation) of the ECMWF hindcasts for NTC, NHUR, and ACE per season. Significance is

indicated at the 99% level with boldface type and an asterisk and at the 95% level with boldface.

NTC NHUR ACE

Lead Corr Rank RMS Corr Rank RMS Corr Rank RMS

Week 1 0.76* 0.71* 37.8 0.68* 0.70* 20.9 0.73* 0.74* 6.46

Week 2 0.53 0.40 49.5 0.41 0.50 29.9 0.48 0.52 6.33

Week 3 0.59* 0.59* 5.6 0.44 0.42 39.1 0.52 0.58* 4.04

Week 4 0.49 0.48 0.4 0.56 0.61* 40.9 0.50 0.58* 4.06

Week 5 0.51 0.47 1.3 0.59* 0.61* 41.5 0.58* 0.62* 3.95

Week 6 0.44 0.46 8.8 0.53* 0.47 46.1 0.49 0.53* 6.17
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Nakamura et al. 2017; Ramsay et al. 2018; Patricola et al. 2018;

Bell et al. 2019). In the case of the Atlantic, the cluster analysis

of observed tracks was discussed in depth in (Kossin et al. 2010;

Kozar et al. 2012; Boudreault et al. 2017). The method is a

probabilistic curve-clustering, which groups together tracks

with similar characteristics, using linear regression mixture

models of second-order polynomials that are fitted to the

tracks. The cluster analysis was run for 101 times (one time

with the tracks input in the original order, and 100 times with

tracks input in random order), for both observed and model

tracks to ensure the stability of the cluster analysis, as discussed

in (Camargo et al. 2008). The case with the smallest log-

likelihood value was selected to assign each track to a partic-

ular cluster.

The cluster analysis of observed TC tracks is an extension of

Kossin et al. (2010) and Boudreault et al. (2017) to the period

1950–2018. As in these previous studies, we consider four

clusters (k 5 4) for the observed TC tracks. However, for the

TC tracks from the ECMWF hindcasts, we consider five clus-

ters, four of which are very similar to the observed ones, and an

additional cluster, which is not present in observations and is

associated with systematic model biases, as will be discussed

below. Cluster analysis is a powerful tool to identify biases in

model tracks, as well as the occurrence of nonobserved track

types (Camargo 2013; Daloz et al. 2015; Nakamura et al. 2017;

Ramsay et al. 2018).

g. Skill scores and model bias

To examine how the hindcasts reproduce the observed

interannual variability of NTC, NHUR, and ACE, we cal-

culate the Pearson correlation, the Spearman rank correla-

tion, and the root-mean-square error between the model and

observations by lead time and by cluster.

Following Lee et al. (2018) and Lee et al. (2020), we use the

Brier skill score (BSS) to determine the skill of NTC and the

ranked probability skill score (RPSS) to evaluate the ACE

FIG. 5. Tracks of the ECMWF Atlantic tropical

storms and hurricanes for the period 1998–2017 for five

clusters with week-2 lead. Colors indicate storm in-

tensity along track: tropical depression (gray), tropical

storm (blue), hurricanes (red; categories 1 and 2), and

major hurricanes (magenta; categories 3–5).
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skill. Also similarly to Lee et al. (2020), we will consider two

reference forecasts for the skill scores. Our first reference is a

constant mean climatology for the months from June to

November (BSSc), and the second one is a monthly varying

climatology (BSSm). In both cases the observational data used

to construct the climatology match the forecast targets over the

entire period and thus include data that would not available at

the time of forecast issuance. Skill scores based on the first

reference forecast can be interpreted as ameasure of themodel

skill in forecasting the value of NTC or ACE, and credit is

given for correctly representing the annual cycle. Skill scores

based on the second reference forecast measure themodel skill

in forecasting anomalies with respect to the monthly clima-

tology, and models do not receive credit for correctly repre-

senting the annual cycle. When computing RPSS for ACE, a

quantile matching is applied to ECMWF storm intensity to

address its underestimation of storm intensity, which will be

discussed in the next section.

When examining the regional skill of TC occurrence fore-

casts, we use the threat score, the Brier score and the Brier skill

score, using both climatologies (constant and monthly varying)

as reference forecasts (BSSc and BSSm).

We calculate the model biases using the difference between

the model and reanalysis climatology in the period 1998–2017

in themonths from June to November. The reanalysis used was

the ERA5 reanalysis produced by ECMWF (Hersbach et al.

2020). We examined the biases of many fields but only show

here 850-hPa winds and 500-hPa geopotential winds, which are

relevant to our results.

3. Results

a. Monthly ECMWF Atlantic TC climatology

We first examine the tracks of the observed and ECMWF

Atlantic TCs. Given the very large number of TCs in the

ECMWF monthly dataset, we only show the tracks of one of

the ECMWF ensemble members (ensemble 2), chosen ran-

domly, for week 2 in Fig. 1a. Figure 1b shows the tracks of all

TABLE 3. Statistics of observations and the ECMWF hindcasts for NTC, NHUR, and ACE (31026) in each cluster per season. For

the ECMWF, the total and the percent of TCs in each cluster, as well as the mean and the standard deviation across all years,

ensembles, and leads for each cluster are shown. For observations, we show the total, percent, mean, and standard deviation across all

years for each cluster for two time periods.

NTC NHUR ACE

Cluster Total % Mean Std dev Total % Mean Std dev Total % Mean Std dev

ECMWF

1 8743 35% 6.6 0.6 470 19% 0.4 0.1 448.9 21% 0.34 0.05

2 3158 13% 2.4 0.9 252 10% 0.2 0.1 222.7 11% 0.17 0.07

3 4145 17% 3.1 1.2 863 34% 0.6 0.5 608.6 29% 0.46 0.23

4 1318 5% 1.0 0.44 42 2% 0.03 0.03 99.1 5% 0.07 0.03

5 7426 30% 5.6 1.2 880 35% 0.7 0.4 722.5 34% 0.55 0.20

Observations for 1998–2017

1 79 26% 3.9 1.7 34 22% 1.7 1.3 4.9 16% 0.24 0.16

2 74 25% 3.7 2.2 24 16% 1.2 1.1 3.7 12% 0.18 0.17

3 94 31% 4.7 1.7 62 41% 3.1 1.5 15.6 52% 0.78 0.50

4 54 18% 2.7 1.6 32 21% 1.6 1.3 6.1 20% 0.31 0.27

Observations for 1950–2018

1 264 32% 3.8 1.7 130 29% 1.9 1.2 18.4 22% 0.27 0.17

2 207 25% 3.0 1.9 87 20% 1.3 1.2 11.5 14% 0.17 0.16

3 239 29% 3.5 2.1 155 35% 2.2 1.6 40.1 49% 0.58 0.47

4 112 14% 1.6 1.4 71 16% 1.0 1.1 12.4 15% 0.18 0.21

FIG. 6. Percentage of NTC, NHUR, and ACE per cluster in

observations (1950–2018 and 1997–2018), and the ensemble mean

ECMWF monthly hindcasts for all leads. Errors estimated using a

bootstrap procedure with 1000 bootstrap samples.
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TCs in observations in the period 1950–2018. The first thing

that is apparent is that the ECMWF storms are much weaker

than the observed storms, with too few category-1–2 hurricanes

and too many tropical storms in comparison with observations.

These intensities biases are present despite the relatively high

model resolution in weeks 1–2. Furthermore, there are also some

spatial biases, which will be explored using cluster analysis.

The climatological number of TCs (NTC) and hurricanes

(NHUR) per month are shown in Fig. 2. The left panels show

the mean number of TCs and hurricanes separately for the first

ensemble member (control) and for ensemble members 1–10

at week 2, while the right panels show the mean numbers by

lead time. Some interesting patterns are clear from this figure.

First, in Figs. 2a and 2b, there is large difference in the mean

number of TCs and hurricanes between the control and the

ensemble members that were generated using stochastic per-

turbations of the model physics. For instance in August and

September, the mean number of TCs for the control is ap-

proximately 4, while the value ranges between about 6 and 8

for the other ensemble members. This difference is clear for

both TCs and hurricanes, especially during the peak season

(August–October, ASO). While the number of TCs for the

deterministic control run (E0) at week 2 is close to the ob-

served number, the perturbed ensemble members clearly

overproduce TCs. In the case of hurricanes, the perturbed

ensemble members produce more hurricanes than the control,

but all ensemble members produce too few hurricanes in

comparison with observations, especially during the peak

season in September, when none of the ensemble members

has a mean number of hurricanes close to the observed. For

hurricanes, the bias in the deterministic ensemble member is

much larger than in the stochastic ones. Recently, Vidale et al.

(2021) showed that the use of stochastic parameterization en-

hances the simulation of TCs in a way similar to the increase in

model horizontal resolution. They showed that the use of sto-

chastic parameterization increased the TC frequency by ap-

proximately 30%, removed some of the climatological model

biases and improved the simulation of the TC seasonal cycle.

The main reason for these changes is that the stochastic pa-

rameterization generates a higher number of seeds, as well as a

higher genesis rate, leading to a more efficient transition of

seeds into TCs.

Figures 2b and 2d showed a clear decrease in the number of

TCs and hurricanes in the model with longer lead times. There

is a distinct difference between weeks 1–2 and 3–6. This dif-

ference is probably associated with the degradation of the

model horizontal resolution at day 11. There is well-known

relationship between model resolution and the ability of the

models to simulate intense storms (Davis 2018; Moon et al.

2020a,b), and the global climate model TC climatology (gen-

esis and intensity) is known to improve with model resolution

(Murakami and Sugi 2010; Shaevitz et al. 2014; Camargo et al.

2020, e.g.).

There is a seasonal dependence on the reduction of TC

numbers by lead time at Week 3. While the number of TCs

reduces with lead time in June and July, that is not the case

during the peak season (ASO), when the number of TCs

remains constant with lead time, and slightly increases with

lead time in November. In the case of hurricanes, besides

the clear decrease after week 3, there are no other clear

signals because of the very low number of occurrences for

longer leads.

Figure 3a shows the ensemble mean number of TCs per sea-

son for different lead times, with the week-2 ensemble spread

shown in Fig. 3b. Similar figures for the mean number of hur-

ricanes are shown in Figs. 3c,d. The observed number of TCs

and hurricanes are also shown in the figure. The statistics of

NTC and NHUR per season across all years for the ensemble

mean and observations are given in Table 1. As noted above

for specific months, there is a large difference in the mean

number of TCs and hurricanes per season for weeks 1 and 2 as

FIG. 7. Biases in the climatological fields of low-level (850 hPa)

(a) zonal and (b) meridional winds (m s21) and for (c) 500-hPa

geopotential heights (m2 s22).
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compared with longer lead times. The model generates too

many TCs per season in weeks 1 and 2 (Fig. 3a), with the ob-

servations typically below or at the minimum of the ensemble

spread for week 2 (Fig. 3b). For longer lead times (weeks 3–6),

there is a much better match between the mean observed NTC

and the model ensemble mean. While the number of hurri-

canes produced by themodel is larger in weeks 1 and 2 (Fig. 3c)

than in longer leads, even at week 2, the number of hurricanes

across the full ensemble is much lower than the observed

values. Table 1 shows the statistics of NTC and NHUR for the

ensemble mean, as well as the control simulation. The stark

differences between the ensemble mean and the control sim-

ulation statistics are very clear, for both variables, emphasizing

the high number of storms generated using the stochastic

parameterization.

Table 1 also shows the statistics of ACE per lead time in the

ECMWF system, as well as in observations. ACE is an inte-

grated quantity, including number, duration and intensity. For

the control run (E0), the meanACE is lower than the observed

ACE for all leads, decreasing with lead time. In contrast, the

ensemblemeanACE ismuch higher than the observedACE in

weeks 1 and 2, due to excessive number of TCs in the model at

those leads. Similarly to NTC, there is a sharp decrease in ACE

at week 3, with the higher grid spacing used in the model. The

mean ACE values are close to the observed values for leads 3–

5, with another large decrease in week 6.

To capture the interannual variability of the hindcasts, the

Pearson correlation, Spearman rank correlation and the nor-

malized root-mean-square error of the ensemble mean NTC

andNHURare given in Table 2 and correspond to the seasonal

values shown in Figs. 3a and 3c. For NTC both correlations are

statistically significant for NTC for leads 1–5, with the highest

correlations occurring for week 1 and week 3. The RMS for

NTC is highest in the first two leads, decreasing an order of

magnitude for leads 3–6.

In the case of NHUR, both correlations are highest for week

1, decrease for weeks 2 and 3 and increase in week 4, with the

same or higher value for week 5. For NHUR the RMS is lowest

for weeks 1 and 2, increasing substantially at week 3 and

remaining with similar values for weeks 4–6.While the changes

in RMS fromweeks 1 and 2 to week 3 are clear from Figs. 2 and

3 and probably associated with the increase in model grid

TABLE 4. Statistics of observations and ECMWF for NTC, NHUR, and ACE (31026) in each cluster per season for El Niño and La

Niña. The ENSO state is based on the value of Niño-3.4 in the ECMWF ensemble at the time of storm genesis. The percentages shown for

the cluster are based on the total value for each cluster. Also shown are the statistics for 5 and 17 ENSO events in observations. Boldface

type indicates statistical significance of the sum of all years in each cluster for the variable. An asterisk indicates statistical significance of

the total per seaon in each cluster for the variable. Statistical significance was done using the Kolmogorov–Smirnov hypothesis test. For

observations, statistical significance was determined by correlation with Niño-3.4 in ASO at the 95% significance level.

NTC NHUR ACE

Total % Total % Total %

Cluster EN LN EN LN EN LN EN LN EN LN EN LN

ECMWF monthly—Niño-3.4 model

Total 5938* 7514* 0.24 0.30 520 885 0.21 0.35 469.8* 679.1* 0.22 0.32

1 2278 2473 0.26 0.28 121 153 0.26 0.33 117.0 131.3 0.26 0.29

2 624* 1157* 0.20 0.37 44 99 0.17 0.39 41.2* 82.8* 0.19 0.37

3 858* 1327* 0.21 0.32 143 337 0.17 0.39 116.1 211.5 0.19 0.35

4 276* 514* 0.21 0.39 9 16 0.21 0.38 21.1* 39.3* 0.21 0.40

5 1902 2043 0.26 0.28 203 208 0.23 0.32 174.3 214.1 0.24 0.30

ECMWF monthly—5 ENSO events

Total 4639* 6808* 0.21 0.31 380* 836* 0.17 0.37 361.1* 632.7* 0.19 0.34

1 1753* 2096* 0.24 0.28 77* 134* 0.19 0.34 87.2* 113.4* 0.23 0.30

2 462* 1083* 0.17 0.39 34* 88* 0.15 0.39 30.9* 77.2* 0.16 0.39

3 661* 1256* 0.18 0.34 106* 329* 0.13 0.41 87.9* 203.5* 0.16 0.37

4 202* 451* 0.18 0.40 8 16 0.20 0.40 16.0* 35.5* 0.18 0.41

5 1561* 1922* 0.23 0.29 155* 269* 0.19 0.33 139.1* 203.1* 0.21 0.31

Observations—5 ENSO events

Total 57 80 0.19 0.27 25 44 0.16 0.29 57.3 83.6 0.19 0.28

1 20 15 0.25 0.19 8 4 0.24 0.12 14.4 6.0 0.30 0.12

2 10 21 0.14 0.28 2 8 0.08 0.33 5.5 11.2 0.15 0.30

3 17 30 0.18 0.32 10 23 0.16 0.37 27.8 51.7 0.18 0.33

4 10 14 0.19 0.26 5 9 0.16 0.28 9.6 14.7 0.16 0.24

Observations—17 ENSO events

Total 167 233 0.20 0.28 82 129 0.19 0.29 155.7 253.4 0.19 0.31

1 68 63 0.26 0.24 32 25 0.25 0.19 47.3 39.3 0.26 0.21

2 38 64 0.18 0.31 13 29 0.15 0.33 21.3 37.8 0.18 0.33

3 43 71 0.18 0.30 26 51 0.17 0.33 68.7 135.1 0.17 0.34

4 18 35 0.16 0.31 11 24 0.15 0.34 18.5 41.2 0.15 0.33
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spacing, the reason behind the increase in correlation at the

longer leads is not clear.

Similar to NTC and NHUR, the highest correlation be-

tween the ensemble mean ACE and observed ACE occurs at

week 1 (Table 2), and the correlations are statistically sig-

nificant for all leads. The lowest ACE correlations values

occur at week 2—they increase at week 3 and remain with

similar values for weeks 4 and 5, before decreasing again for

week 6. The RMS highest values occur for weeks 1 and 2,

when the ensemblemeanACE is typically too high—ACERMS

reduces and is very stable for weeks 3–5, before increasing again

for week 6.

The analysis presented so far shows the important influence

of both model resolution and use of the stochastic parame-

terization in determining the ability of the ECMWF model in

reproducing the climatological and interannual variability of

TC activity in the Atlantic.

b. Cluster analysis

To consider the climatological characteristics of the

ECMWF tracks, we use cluster analysis, which is described

in detail in section 2f. The application of this cluster method

to observed North Atlantic tropical cyclones is described in

Kossin et al. (2010), with additional aspects discussed in

Kozar et al. (2012) and Boudreault et al. (2017).

Following Kossin et al. (2010), here we use four clusters to

describe the Atlantic tropical cyclone tracks as shown in

Fig. 4. Cluster 1 mostly consists of storms that form in the

subtropics and mainly affect the U.S. East Coast. Gulf of

Mexico TCs dominate cluster 2. Cluster-3 and cluster-4 TCs

form in the tropical Atlantic main development region

(MDR) and are differentiated by the longitude of the for-

mation, with cluster-3 TC genesis closer to Africa (MDR–

East/Cape Verde storms), and cluster-4 TC genesis closer to

the Caribbean (MDR–West/Caribbean storms). Most of the

major hurricanes belong to cluster 3 (Cape Verde storms).

The highest rate of landfalling storms occur for the Gulf of

Mexico (cluster 2) and the Caribbean (cluster 4) TCs.

Additional discussion of the characteristics of the observed

clusters can be found in Kossin et al. (2010), Kozar et al.

(2012), Boudreault et al. (2017).

We applied the same cluster method to the ECMWF

Atlantic TC tracks. However, we used five clusters instead

of 4. The reason for this choice is clear in Fig. 5, which shows

the tracks for storms in week 2. While clusters 1–4 in the

ECMWF monthly tracks can be clearly identified with the

observed clusters, there are tracks in the model that belong

to an additional cluster (cluster 5) with characteristics that

do not match in observations. This additional cluster con-

sists of storms that form in the tropics near Africa and re-

curve toward Africa and/or Europe in locations that are

much more eastward than in the observations. Typically,

these tracks are absent in observations because of the sub-

tropical high, which forces the storms to go around that

region. The tracks in cluster 5 are associated with systematic

model biases, as discussed below.

The contributions of each cluster to the mean NTC,

NHUR, and ACE per season in observations and the model

are given in Fig. 6. The statistics of the clusters are also given

in Table 3. The total number of storms and percentages in

observations varies with the period considered, because of

sampling. For simplicity, in our discussion we will refer to

the observed values for the longer period (1950–2018),

which are more robust. The observed results for both pe-

riods, with the shorter one (1998–2007) matching the model

hindcasts, are shown in Fig. 6 and Table 3.

In observations, cluster 1 has the highest number of TCs

(32%) and cluster 4 has the lowest (14%). The largest dif-

ference between the model and observations is the high

number of TCs (30%) in cluster 5, which has no counterpart

in observations. The percentage of TCs in cluster 5 varies

little by lead time, with a minimum of 28% for week 1, and a

maximum of 34% in week 2. While the percentage of TCs in

cluster 1 (subtropical) is similar in the model and observa-

tions, the percentage of TCs in the other clusters is sub-

stantially lower, in particular in cluster 4. The reduction of

TCs in the western part of the basin (clusters 2, 3, and 4) can

be explained by the tendency of the model to generate too

many TCs near the African coast, which results in a much

more active eastern Atlantic than in observations.

The differences between the model and observations are

greater for NHUR and ACE, since the nonexistent coast of

Africa cluster 5 is the dominant contributor to those variables.

If we consider only the four other ECMWF model clusters,

their relative contributions to NHUR and ACE are similar to

observations, with cluster 3 being the dominant cluster, with

FIG. 8. Percentage of NTC, NHUR, and ACE in El Niño (EN)

andLaNiña (LN) phases for theECMWFmonthly hindcasts for all

storms (All) and by cluster (C1–C5) for all leads. Error bars are

95% confidence intervals estimated using a bootstrap procedure

with 1000 bootstrap samples.
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the highest number of hurricanes and major hurricanes.

Slightly lower than cluster 3 for NHUR and ACE is the

contribution of cluster 1 (subtropical storms), which is also

reproduced in the model. Similarly to NTC, the biggest

difference between models and observations occurs for

cluster 4, which has a very low contribution to the totals in

the model with too few TCs intensifying to hurricanes and

major hurricanes in the Caribbean.

To better understand the reasons behind the occurrence of

this extra cluster, we calculated the model bias of various

environmental fields, by comparing the model climatology

with the ERA5 climatology. Here we show in Fig. 7, the

environmental fields that have biases associated with the ad-

ditional cluster near Africa in the period June to November.

The ECMWF model has a positive bias in the 850-hPa zonal

winds over the tropical eastern Atlantic, reducing the ampli-

tude of the low-level winds (easterlies) (Fig. 7a). Furthermore,

the meridional winds at 850 hPa have a positive bias in the

Atlantic main development region (Fig. 7b), whereas the

500-hPa geopotential height has a positive bias in the mid and

high latitudes of the North Atlantic, on an elongated axis from

southeast to northwest (Fig. 7c). The combination of these

biases is conducive to tracks with an east-northward trajectory,

therefore closer to Africa and avoiding the region of high

FIG. 9. Difference in (a),(c),(e) first position and (b),(d),(e) track density between El Niño and La Niña seasons in
the ECMWF monthly hindcasts for clusters (top) 2, (middle) 3, and (bottom) 4 and all leads.
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geopotential height, which is consistent with the additional

cluster that is present in the model.

c. Relationship with climate modes

Since the number of hindcasts is large in comparison with

observations, we are able to robustly determine whether the

observedmodulation ofAtlantic TCs by various climatemodes

is reproduced in the model. Moreover, the large sample size

allows us to identify characteristics of these modulations that

are not easily discerned in observations due to the shortness of

the reliable TC record and the relatively small number of cli-

mate modes events.

1) ENSO

The El Niño–Southern Oscillation (ENSO) has a well-

known relationship with Atlantic TC activity (Gray 1984;

Camargo et al. 2007a). The ENSOmodulation of Atlantic TC

activity, with typically lower activity in El Niño years and

higher activity in La Niña years, is the main source of pre-

dictability of TC seasonal forecasts in the Atlantic (e.g.,

Vitart et al. 2007; Camargo and Barnston 2009; Klotzbach

et al. 2019, 2020; Caron et al. 2020). However, the basin-wide

modulation is not the only response of North Atlantic TC

activity to ENSO.

Table 4 presents the statistics of the hindcasts and observa-

tions by ENSO phase for NTC, NHUR, and ACE. For the

hindcasts, we considered the ENSO phase defined by the Niño-
3.4 values in themodel, as well as the observed ENSO events in

the period. In the case of observations, we show the statistics

for two periods, a shorter period coinciding with the hindcast

period and a longer period (1950–2018). Because there are

relatively few ENSO events in the shorter period, we only

discuss here the results for the longer period.

The hindcasts clearly reproduce the observed basin-wide

reduction in the occurrence of TC events during El Niño sea-

sons, and the increase during La Niña seasons, as is also shown

in Fig. 8 with the label ‘‘All.’’ This modulation is also present in

NTC and ACE in both model and observations. While the

reduction is statistically significant for NTC and ACE in the

model independently of the ENSO definition, the reduction

in NHUR is only statistically significant using the observed

ENSO values, probably due to the difference in how we define

the ENSO events in observations and the model, as discussed

above. These differences could be particularly important in the

late spring and early summer, when ENSO is typically tran-

sitioning from one phase to the other and Niño-3.4 has smaller

anomalies than in boreal winter.

Kossin et al. (2010) analyzed the modulation of the Atlantic

clusters by ENSO. In observations, the clusters with a statis-

tically significance modulation by ENSO are the two tropical

clusters (clusters 3 and 4), as shown in Table 4. They found a

statistically significant modulation by ENSO for NTC, NHUR

for both clusters, and ACE for cluster 3. Note that the period

analyzed in Kossin et al. (2010) was 1950–2007, while here the

cluster analysis was extended to 2018.

The ECMWF model has a strong ENSO modulation in in-

dividual clusters. When considering the model Niño-3.4 to

define ENSO, clusters 1–4 show a statistically significant

ENSO modulation for NTC and ACE, with fewer clusters

being statistically significant for NHUR, namely clusters 2 and

TABLE 5. Statistics of observations and ECMWF for NTC, NHUR, and ACE (31026) in each cluster per season for NAO1 and

NAO2. Following (Kossin et al. 2010), the NAO phases are defined as the bottom and top quartile of the NAOmean value in May and

June before the hurricane season. Five NAO1 seasons and five NAO2 seasons were considered. The percentages shown for each cluster

are based on the total value of each variable for each cluster. Also shown are the statistics for 5 and 17 NAO seasons in the observations.

Significance is indicated at the 99% level with boldface type and an asterisk and at the 95% level with boldface type only.

NTC NHUR ACE

Total % Total % Total %

Cluster NAO1 NAO2 NAO1 NAO2 NAO1 NAO2 NAO1 NAO2 NAO1 NAO2 NAO1 NAO2

ECMWF monthly—5 NAO events MJ

Total 6060 6684 0.24 0.27 613* 752* 0.24 0.30 513 591.45 0.24 0.28

1 2145 2263 0.25 0.26 114 142 0.24 0.30 108.97 118.81 0.24 0.26

2 683* 903* 0.22 0.29 47 71 0.19 0.28 44.56* 63.82* 0.20 0.29

3 940* 1218* 0.23 0.29 208* 283* 0.24 0.33 142.68* 187.92* 0.23 0.31

4 281* 424* 0.21 0.32 5 9 0.12 0.21 19.72 29.90 0.20 0.30

5 2011 1876 0.27 0.25 239 247 0.27 0.28 197.08 190.98 0.27 0.26

Observations—5 NAO events

Total 62 76 0.21 0.25 25 47 0.16 0.31 51.83 80.72 0.17 0.27

1 17 16 0.21 0.20 3 13 0.09 0.38 6.97 11.75 0.14 0.24

2 14 16 0.19 0.22 4 3 0.17 0.12 5.32 7.22 0.14 0.20

3 19 29 0.20 0.31 12 20 0.19 0.32 29.67 42.72 0.19 0.27

4 12 15 0.22 0.28 6 11 0.19 0.34 9.87 19.03 0.16 0.31

Observations—17 NAO events

Total 202 213 0.25 0.26 106 124 0.24 0.28 179.96 223.88 0.22 0.27

1 64 62 0.24 0.23 31 34 0.24 0.26 38.64 42.27 0.21 0.23

2 54 48 0.26 0.23 23 17 0.26 0.19 29.23 22.72 0.25 0.20

3 60 71 0.25 0.30 38 50 0.24 0.32 89.02 118.45 0.22 0.29

4 24 32 0.21 0.29 14 23 0.20 0.32 23.06 40.44 0.18 0.32
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3. Cluster 5 has a statistically significant ENSO modulation for

NHUR and ACE.

If we consider the observed ENSO, instead of the model

ENSO, all clusters show a statistically significant ENSO mod-

ulation for all variables (NTC, NHUR, and ACE), with ex-

ception of cluster 4 for NHUR, which has a very small sample

size (see Table 4 and Fig. 8). The strong ENSO modulation of

the clusters in the ECMWF model is clear in the first position

and track density differences between El Niño and La Niña for
clusters 2–4 (Fig. 9). The increase in genesis and occurrence in

La Niña seasons in comparison with El Niño seasons is ap-

parent not only in the genesis locations (left panels), but across

basin subregions. While it is well known that the flavor of

ENSO influences the degree to what the TCs are suppressed in

theAtlantic (Patricola et al. 2016), there are not enough ENSO

events in the hindcast period to examine that.

2) AMM

The Atlantic meridional mode (AMM) is another climate

mode that has a substantial influence on the interannual

variability of Atlantic hurricane activity (Kossin and Vimont

2007; Vimont and Kossin 2007), with higher activity than

usual during the positive phase of the AMM and suppressed

activity in seasons when the AMM is in its negative phase.

Furthermore using model simulations, Patricola et al. (2016)

demonstrated that constructive combinations of ENSO and

AMM phases can lead to either extremely active or sup-

pressed Atlantic seasons. Kossin et al. (2010) singled out the

twoMDR tropical clusters (3 and 4) as being most affected by

the AMM, which was confirmed by Boudreault et al. (2017).

During the ECMWF hindcast period, the AMM is positive

in most of the Atlantic hurricane seasons. Considering months

with positive/negative values above/below 1 standard devia-

tion of the data, there are only 8 months with negative AMM,

as compared with 45 months with positive AMM. Moreover,

there are only six ASO seasons with negative AMM, and from

those only one is below 1 standard deviation. Therefore, un-

fortunately it does not make sense to analyze the influence of

the AMM in this ECMWF hindcast period, as there are not

enough seasons with a negative AMM for the analysis to be

meaningful and statistically significant in both AMM phases.

3) NAO

The relation between the NAO and Atlantic hurricanes was

first discussed by Elsner and collaborators in various publica-

tions (Elsner and Kara 1999; Elsner and Kocher 2000; Elsner

2003). Subsequent publications have documented the com-

plexity of the relationship. For instance, Kossin et al. (2010)

noted that the annual rate of storms in cluster 1 (subtropical) is

associated with the May–June NAO index. Specifically when

theNAO is in its negative phase during thosemonths, there are

more storms in cluster 1 during the hurricane season (June–

November). The link between the NAO and Atlantic TC ac-

tivity is thought to be through the position and strength of the

Atlantic subtropical high. Interestingly, Kozar et al. (2012)

found a relationship between Atlantic TC counts and the bo-

real winter postseason NAO index, in particular to cluster 4

(Caribbean). More recently, Angus and Leckerbusch (2020)

showed that there is an inverse relationship between the TC

activity and the following European winter season and ex-

plained this connection through ENSO and the winter NAO.

However, other studies do not find a relationship between

Atlantic hurricane tracks and the NAO (Colbert and Soden

2012). Therefore, the topic was revisited by Boudreault et al.

(2017), who pointed out that while there is a statistically sig-

nificant relationship between May–June NAO and basin-wide

TC activity, NAO does not have any predictive skill for land-

falling Atlantic hurricanes.

Here we reexamine the relationship of TC activity with the

NAO using the ECMWF hindcast and with the expectation

that its large sample will help to clarify this issue. Table 5 shows

the statistics of NAO and Atlantic TCs in observations and

the ECMWF monthly hindcasts. For observations, there is a

statistically significant increase in NHUR in the basin for

NAO2 when compared with NAO1. There are also statistically

significant differences inNTC for cluster 3 andACE for cluster 4.

We note that the analysis performed here considers a different

period than that used in Kossin et al. (2010) and that the

modulation of cluster 1 activity by NAO is not apparent.

In the case of the ECMWF hindcasts, there is a much clearer

signal of the NAO modulation of the Atlantic TC activity, as

shown in Fig. 10 and Table 5. The total NTC and NHUR are

modulated by the NAO, with an increase in activity for

NAO2. Furthermore, clusters 2, 3, and 4 have a statistically

significant modulation of NTC and ACE with the NAO phase.

Modulation of NHUR in Cluster 3 is also statistically signifi-

cant. The lack of a signal in NHUR for clusters 2 and 4 could be

FIG. 10. Percentage of NTC, NHUR, and ACE in the positive

and negative NAO phases (NAO1 and NAO2) by cluster for the

ECMWF monthly hindcasts for all leads. Errors are estimated

using a bootstrap procedure with 1000 bootstrap samples.
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due to the low number of hurricanes in those clusters, in par-

ticular cluster 4. Interestingly, cluster 5 has a modulation in

NTC that is the opposite of the other clusters, that is, a higher

value of NTC for NAO2. Furthermore, there is nomodulation

by NAO in the subtropical cluster 1 in the hindcasts. These

results appear clearly in the track density differences between

NAO1 and NAO2 (Fig. 11), which show a clear increase in

TC occurrence for NAO2 for clusters 2, 3, and 4, the opposite

in cluster 5, and the lack of a clear signal in cluster 1.

4) MJO

As mentioned above, there is a strong modulation of TCs

globally by the MJO. In the case of the Atlantic, this modu-

lation was first noticed in Gulf of Mexico storms (Maloney and

Hartmann 2000). Kossin et al. (2010) found a statistically sig-

nificantMJOmodulation of Gulf of Mexico storms in cluster 2,

but not in the other clusters. The observed increase in TC

activity occurs in the combined RMM phases 8 1 1 and 2 1 3

with a suppression in the other phases (41 5, 61 7). This signal

is also clear in a genesis index (Camargo et al. 2009), which

elucidates the role of environmental fields in the MJO modu-

lation of TC activity. Klotzbach (2014) found that the statistical

significance of the MJO modulation depends on the variable

considered, with the strongest signals being an increase in TC

activity in phases 1 1 2 for NTC, NHUR, and ACE when

compared with phases 6 1 7.

Here we examine the modulation of the TC activity by the

MJO in the ECMWF hindscast applying the same type of vi-

sualization used in Lee et al. (2018), the ‘‘candy plot,’’ as shown

in Fig. 12. The color of each circle indicates the percentage of

TCs occurring in each MJO phase in the basin. In observations

(see Fig. 6 in Lee et al. 2018), the Atlantic has a statistically

significant increase in TC activity in phases 2, 3, and 4 and a

statistically significant decrease in phases 6, 7, and 8.

FIG. 11. Track density difference between five posi-

tive and five negative NAO seasons for all lead times by

cluster in the ECMWF monthly hindcasts.
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The modulation in the Atlantic in the ECMWF hindcasts

shows a statistically significant increase in genesis in the

Atlantic for RMM phases 1, 2, and 8, and a suppression in

phases 3–7 (Fig. 12). The modulation is robust across lead

times. The high TC activity in phase 1 is statistically signif-

icant for all lead times and for phase 8 for weeks 2–6.

Similarly, the suppression of TC activity in phases 3–6 is

significant for weeks 2–6, with phase 5 being also statistically

significant for week 1. The MJO modulation is not robust

across lead times for phases 2 and 7, with the signal being

statistically significant for only a few cases and in the case of

phase 7, the modulation changes sign for different lead

times. The hindcasts are clearly strongly modulated by the

MJO phase even at long leads, indicating the possibility of

skillful forecasts at subseasonal time scales at long leads for

specific MJO phases.

d. Skill scores

To examine the skill of the ECMWF monthly system in

forecasting Atlantic TC activity, we use the Brier skill score

(BSS) for the genesis forecasts. The BSSmeasures skill relative

to a reference forecast, and similarly to Lee et al. (2018), we

consider two climatologies as reference forecasts: a constant

climatology and a monthly varying climatology. The resulting

scores are shown in Fig. 13. The BSS for all leads combined are

given in the diamonds, and the BSS values for different lead

times are shown in the curves. The seasonal varying climatol-

ogy leads to lower values of BSS, and the genesis forecasts have

negative skill for all leads, except week 1. In contrast, the BSS

for the constant climatology is positive for all lead times. The

highest skill values for both cases occur for week 1 and week 6,

with very similar BSS values from week 2 to week 5.

We examined the skill of ACE forecasts using the rank

probability skill score (RPSS). Similar to the case of genesis the

RPSS is negative for all leads when comparing the ECMWF’s

prediction skill with the monthly varying climatology, while it

is positive when comparing with a constant climatology. The

RPSS is slightly higher for week 1 and is almost constant af-

terward using a constant climatology, whereas with a varying

climatology there is a minimum at week 3. While there is some

skill in the ECMWF system for basin wide genesis and ACE,

the skill is low and not greater than that of a monthly varying

climatology.

Next we examined the regional skill for predicting TC oc-

currence in the Atlantic basin. The threat score is shown

Fig. 14a. The higher the threat score the more accurate the

forecast is (a perfect forecast has a threat score equal to 1),

measuring the fraction of events that were correctly predicted.

The highest threat score values occur in themiddle of the basin,

while the lowest ones are near the African coast and north of

South America. The Brier score, which measures the magni-

tude of the probability forecast error, is shown in Fig. 14b, and

in this case a perfect score is zero. The region with the highest

values for the Brier score (largest forecast errors) occur near

Florida and the southeastern United States. The two bottom

panels of Figs. 14c and 14d represent the Brier skill score

FIG. 12. Candy plot of MJO modulation using RMM following

Lee et al. (2020). The color of each candy indicates the probability

distribution function in percent in the correspondingMJO phase in

the basin. The sum of the circles across the MJO phases in each

basin is 100%. A black circle at the edge of the disk indicates that

the value is above the 90th percentile of the distribution, and a

cross symbol at the center of the disk means that the value is below

the 10th percentile of the distribution. Definitions: ‘‘all’’ means not

separated by clusters, the clusters are identified as c1–c5, and the

locations of the RMM phases 1–8 as defined in Wheeler and

Hendon (2004) are also indicated by their location: western

Hemisphere (WH), IndianOcean (IO),MaritimeContinent (MC),

and western Pacific (WP).

FIG. 13. (a) Brier skill score (BSS) of TC genesis forecasts and (b) ranked probability skill score (RPSS) of ACE

forecasts. Curves show the skill score by lead time (weeks 1–6), and diamonds show the skill score for all leads. Skill

scores are computed using as reference forecast a seasonal constant climatology (blue) and a monthly varying

climatology (orange), following Lee et al. (2020).

3796 MONTHLY WEATHER REV IEW VOLUME 149

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/30/24 02:24 PM UTC



relative to a constant climatology (BSSc) and a monthly vary-

ing climatology (BSSm). In both cases, negative BSS values can

be found near Africa, where the model forms too many storms,

as noted above. Positive BSS can be found in the middle of the

basin and in the Caribbean (relative to both types of clima-

tology), as well as in the Gulf of Mexico (for a constant cli-

matology only). The region close to the U.S. Southeast Coast

has negative BSS in both cases.

e. Predictability

Given the low skill scores of the ECMWF system, we would

like to explore its potential predictability. We estimated

the predictability by designating one ensemble member as

‘‘observations’’ for NTC and NHUR, and then calculated the

Brier skill score using the other ensemble members, repeating

the process across all ensembles. We excluded the control

simulation (E0) from this process, given the different charac-

teristics of that ensemble member from the others. The top

panels of Fig. 15 show the predictability of the ensemble for

basin-wide values of NTC and NHUR. As expected, the

highest BSS occurs for week 1 and decreases with lead times. In

the case of NTC, the BSS for weeks 1 and 2 is substantially

higher than for weeks 3–6, which have very similar values. In

contrast, for NHUR, BSS for week 2 is similar to that at longer

leads times. By week 6, the NHUR BSS value reaches 0, in-

dicating lack of predictability, which is not the case for NTC.

The bottom panels of Fig. 15 consider the predictability of

NTC and NHUR for each cluster. Different clusters, have

different levels of predictability. The cluster with most

predictable NTC and NHUR is cluster 5, which has no ob-

served counterpart and is the second most populated cluster.

The least predictable (NTC and NHUR) cluster is cluster 4

(MDR–Caribbean), which has a bias of very low frequency in

the ECMWF system. For NTC at week 1, clusters 1, 2, and 5

have approximately the same high BSS values. However, while

the BSS of clusters 1 (subtropical) and 2 (Gulf of Mexico)

strongly decrease at week 2, the BSS decrease of cluster 5 is

slower. By week 4, the only clusters with positive BSS are

clusters 5 and 3 (MDR–Cape Verde), both with genesis on the

eastern part of the basin. In the case of NHUR, clusters 5, 3, 1,

and 4 (in decreasing order of BSS) have positive BSS values at

week 1, but by week 3, only clusters 5 and 3 still have pre-

dictability. Probably the lower predictability of the system for

NHUR is associated with the low-intensity bias of the model,

especially for higher lead times, when NHUR is very low. It is

encouraging that the cluster with the most intense and dan-

gerous hurricanes (cluster 3) has a positive BSS for NHUR up

to week 3, indicating the potential for skillful forecasts for

those storms.

4. Conclusions

Here, we examined the characteristics of Atlantic hurricane

activity in the ECMWF monthly system and compared them

with observations. Both model resolution and the stochastic

parameterization used in 10 of the 11 ensemble members

strongly influence how well the ECMWF hindcast system can

reproduce the observed characteristics of Atlantic TC activity.

In the case of NTC, the control ensemble produces a mean

value close to the observed, while the perturbed ensemble

members produce too many storms. The number of hurricanes

is low in all ensemble members, in particular in the control,

FIG. 14. (a) Threat score, (b) Brier score, and BSS of (c) seasonal constant climatology and (d) monthly varying

climatology for TC occurrence hindcasts in week 2. BSSc and BSSm are computed following Lee et al. (2020).
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when compared with observations. There is a clear decline in

NTC and NHUR at longer lead times (weeks 3–6), when the

model horizontal resolution is degraded. Overall, the ECMWF

monthly system has a low-intensity bias in hurricane intensity,

with very few occurrences of major hurricanes at all leads.

Using cluster analysis, we compared the track characteristics

of the ECMWF Atlantic TCs with observations. There are

clear spatial differences, with the ECMWF system having an

additional cluster with recurving tracks near the coast of Africa

with characteristics that do not correspond to the observations.

Furthermore, the cluster with Caribbean storms (cluster 4) has

too few TCs, indicating an eastward bias in the model genesis.

Nonetheless, despite the additional cluster, the other clusters

tracks have strong similarities with observations. In particular,

the Cape Verde cluster (cluster 3), with the most intense and

devastating hurricanes is well represented in the ECMWF

system. Similarly, the Gulf of Mexico (cluster 2) and East

Coast (cluster 1) clusters have many characteristics similar to

the observed ones.

The recurving nonobserved tracks near Africa are shown to

be associated with systematic biases in low-level winds in

geopotential heights in the ECMWF model. These biases lead

to lower BSS values near the coast of Africa. The model skill is

highest in the mid-Atlantic and near the Caribbean. The skill

score results depend on choice of the reference forecast

(monthly varying or constant climatology).

The modulation of the ECMWF Atlantic TCs by climate

modes was examined. Strong modulation by ENSO, NAO

and MJO was clear for the full basin, as well as for individual

clusters. In particular, the MJOmodulation strongly supports

the possibility of skillful subseasonal TC forecasts, as the

MJO is the main source of predictability on those time scales.

FIG. 15. Estimate of predictability for NTC and NHUR using BSS among 10 ensemble members (excluding

control): (a) NTC, (b) NHUR, (c) NTC per cluster, and (d) NHUR per cluster.
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While in the current system, there are only positive skill

scores in certain cases, our predictability analysis indicates

that there is possibility of developing skillful subseasonal

Atlantic TC forecasts, not only for the full basin, but on re-

gional scales, as indicated by the predictability of the differ-

ent clusters.
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